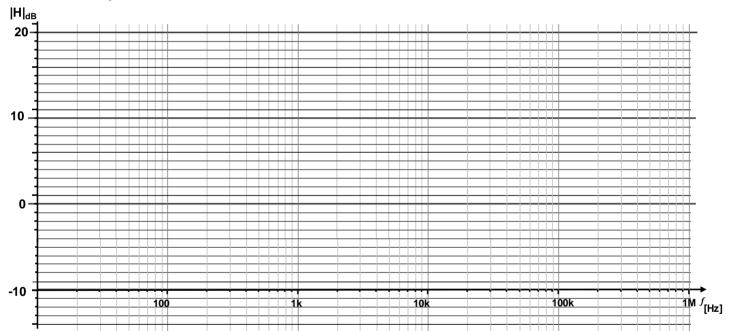

La concision est de rigueur.

1. MONTAGE A AMPLIFICATEUR OPERATIONNEL.

On donne le schéma suivant:

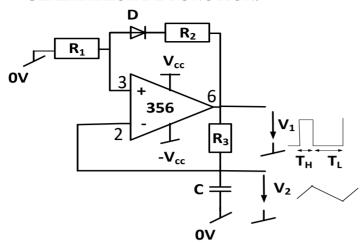

$$Vcc = 15V$$
; $-Vcc = -15V$

$$R_1 = R_2 = 12 k\Omega$$

$$R_3 = R_4 = 82 k\Omega$$

$$C = 15 \text{ nF}$$

1.1 Réaliser le montage et tracer la fonction de transfert en amplitude mesurée ainsi que son diagramme de Bode théorique pour des fréquences de 10Hz à 500 kHz (prendre au moins 3 points de mesure par décade).

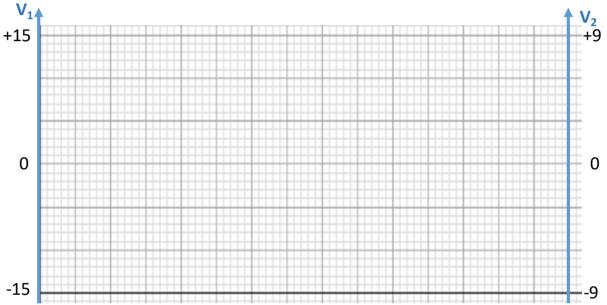

1.2 Mesurer les fréquences de coupure (f₁, f₂,...) en donnant les gains et les phases expérimentaux ainsi que leurs expressions théoriques quand c'est possible.

Valeur
Gain (dB)
Phase
Expression Théorique

f1
f2

f3

2 GENERATEUR DE FONCTION.


$$V_{H} \approx Vcc = 15V$$

$$V_{L} \approx -Vcc = -15V$$

$$R_{1} = R_{2} = R_{3} = 82 \text{ k}\Omega$$

$$C = 15 \text{ nF}$$

2.1 Réalisez le circuit et reporter les signaux expérimentaux $V_1(t)$ et $V_2(t)$ sur une période ainsi que leurs valeurs limites (max et min) .

2.2 Donner les expressions théoriques de T_H ($V_1 = V_{CC}$) et de T_L ($V_1 = -V_{CC}$) en fonction des éléments du circuit ainsi que leurs valeurs théoriques et expérimentales.

	Expression Théorique	Valeur théorique	Valeur expérimentale
Тн			
TL			